A proof of Toponogov’s theorem in Alexandrov geometry
نویسندگان
چکیده
This note aims to give an elementary proof for Toponogov’s theorem in Alexandrov geometry with lower curvature bound. The idea of the comes from fact that, Riemannian geometry, sectional can be embodied geodesic variations.
منابع مشابه
A Convergence Theorem in the Geometry of Alexandrov Spaces
The fibration theorems in Riemannian geometry play an important role in the theory of convergence of Riemannian manifolds. In the present paper, we extend them to the Lipschitz submersion theorem for Alexandrov spaces, and discuss some applications. Résumé. Les théorèmes de fibration de la géométrie riemannienne jouent un rôle important dans la théorie de la convergence des variétés riemannienn...
متن کاملA Splitting Theorem for Alexandrov Spaces
A classical result of Toponogov [12] states that if a complete Riemannian manifold M with nonnegative sectional curvature contains a straight line, thenM is isometric to the metric product of a nonnegatively curved manifold and a line. We then know that the Busemann function associated with the straight line is an affine function, namely, a function which is affine on each unit speed geodesic i...
متن کاملAnother proof of Banaschewski's surjection theorem
We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities ("not necessarily symmetric uniformities"). Further, we show how a (regular) Cauchy point on a closed uniform subl...
متن کاملTrigonometric Proof of Steiner-lehmus Theorem in Hyperbolic Geometry
In this note, we present a short trigonometric proof to the Steiner Lehmus Theorem in hyperbolic geometry. 2000 Mathematics Subject Classification: 30F45, 20N99, 51B10, 51M10
متن کاملExtrinsic Curvature of Semiconvex Subspaces in Alexandrov Geometry
In Alexandrov spaces of curvature bounded either above (CBA) or below (CBB), we obtain extrinsic curvature bounds on subspaces associated with semiconcave functions. For CBA spaces, we obtain new intrinsic curvature bounds on subspaces. For CBB spaces whose boundary is extrinsically curved, we strengthen Perelman’s concavity theorem for distance from the boundary, deriving corollaries on sharp ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2022
ISSN: ['2330-1511']
DOI: https://doi.org/10.1090/proc/16192